

BVV Sangha, Bagalkot AMRUTA INSTITUTE OF ENGINEERING & MANAGEMENT SCIENCES

Approved by AICTE, New Delhi

Recognized by Government of Karnataka & Affiliated to VTU, Belagavi

AIEMS

BENGALURU

DEPARTMENT OF INFORMATION SCIENCE

Program Outcomes (POs)

PO 1	Engineering Knowledge: Apply the knowledge of mathematics, science,							
	engineering fundamentals, and an engineering specialization to the solution of							
	complex engineering problems							
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze							
	complex engineering problems reaching substantiated conclusions using first							
	principles of mathematics, natural sciences, and engineering sciences.							
PO 3	Design/development of solutions: Design solutions for complex engineering							
	problems and design system components or processes that meet the specified needs							
	with appropriate consideration for the public health and safety, and the cultural,							
	societal, and environmental considerations.							
PO 4	Conduct investigations of complex problems: Use research-based knowledge and							
	research methods including design of experiments, analysis and interpretation of							
	data, and synthesis of the information to provide valid conclusions.							
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources,							
	and modern engineering and IT tools including prediction and modelling to complex							
	engineering activities with an understanding of the limitations.							
PO 6	The Engineer and Society: Apply reasoning informed by the contextual knowledge							
	to assess societal, health, safety, legal and cultural issues and the consequent							
	responsibilities relevant to the professional engineering practice.							
PO 7	Environment and Sustainability: Understand the impact of the professional							
	engineering solutions in societal and environmental contexts, and demonstrate the							
	knowledge of, and need for sustainable development.							
PO 8	Ethics: Apply ethical principles and commit to professional ethics and							
	responsibilities and norms of the engineering practice.							
PO 9	Individual and Team Work: Function effectively as an individual, and as a							
	member or leader in diverse teams, and in multidisciplinary settings.							
PO 10	Communication: Communicate effectively on complex engineering activities with							
	the engineering community and with society at large, such as, being able to							
	comprehend and write effective reports and design documentation, make effective							
	presentations, and give and receive clear instructions.							
PO 11	Project Management and Finance: Demonstrate knowledge and understanding of							
	the engineering and management principles and apply these to one's own work, as a							
	member and leader in a team, to manage projects and in multidisciplinary							
	environments.							
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to							
	engage in independent and life-long learning in the broadest context of technological							
	change.							

Course Outcomes (Cos)

Course Code	Course	COs	Course Outcome
BMATS101	Mathematics-I	CO1	apply the knowledge of calculus to solve problems related to polar curves andlearn the notion of partial differentiation to compute rate of change of multivariate functions
		CO2	analyze the solution of linear and nonlinear ordinary differential equations
		CO3	get acquainted and to apply modular arithmetic to computer algorithms
		CO4	make use of matrix theory for solving the system of linear equations and compute eigenvalues and eigenvectors
		CO5	familiarize with modern mathematical tools namely MATHEMATICA/MATLAB/ PYTHON/ SCILAB
BMATS201	Mathematics-II	CO1	Apply the concept of change of order of integration and variables to evaluate multiple integrals and their usage in computing area and volume
		CO2	Understand the applications of vector calculus refer to solenoidal, and irrotational vectors.Orthogonal curvilinear coordinates
		CO3	Demonstrate the idea of Linear dependence and independence of sets in the vector space, and linear transformation
		CO4	Apply the knowledge of numerical methods in analysing the discrete data and solving the physical and engineering problems.
		CO5	Get familiarize with modern mathematical tools namely MATHEMATICA/ MATLAB /PYTHON/ SCILAB
BPHYS102/202	Applied Physics	CO1	Describe the principles of LASERS and Optical fibers and their relevant applications.
		CO2	Discuss the basic principles of the Quantum Mechanics and its application in Quantum Computing.
		CO3	Summarize the essential properties of superconductors and its applications in qubits.
		CO4	Illustrate the application of physics in design and data analysis.
		CO5	and perform preciseand honest measurements.
BCHES102/202	Applied Chemistry	CO1	Identify the terms and applications processes involved in scientific and engineering
		CO2	Explainthephenomenaofchemistrytodescribethemethodsofeng ineeringprocesses
		CO3	Solvetheproblemsinchemistrythatarepertinentinengineeringap plications
		CO4	Applythebasicconceptsofchemistrytoexplainthechemicalprope rtiesandprocesses
		CO5	Analyzepropertiesandmultidisciplinarysituations processes associated withchemical substances insciplinarysituations
BPOPS103/203	Principles of Programming	CO1	Elucidate the basic architecture and functionalities of a computer and also recognize the hardware parts.
	using C	CO2	Apply programming constructs of C language to solve the real world problem
		CO3	Explore user-defined data structures like arrays in implementing solutions to problems like searching and sorting

		CO4	Explore user-defined data structures like structures, unions and pointers in implementing solutions
		CO5	Design and Develop Solutions to problems using modular programming constructs using functions
BESCK104E/20 4E	Introduction to C Programming	CO1	Elucidate the basic architecture and functionalities of a computer and also recognize the hardware parts.
		CO2	Apply programming constructs of C language to solve the realworld problem
		CO3	Explore user-defined data structures like arrays in implementing solutions to problems like searching and sorting
		CO4	Explore user-defined data structures like structures, unions and pointers in implementing solutions
		CO5	Design and Develop Solutions to problems using modular programming constructs using functions
BPLCK105A/ BPLCK205A	Introduction to Web	CO1	Explain the historical context and justification for HTML over XHTML
DI L'ER203A	Programming	CO2	Develop HTML5 documents and adding various semantic markup tags
		CO3	Analyse various attributes, values and types of CSS
		CO4	Implement core constructs and event handling mechanisms of JavaScript.
BPLCK105B/2 05B	Introduction to Python	CO1	CO1Demonstrate proficiency in handling loops and creation of functions.
	Programming	CO2	Identify the methods to create and manipulate lists, tuples and dictionaries.
		CO3	Develop programs for string processing and file organization
		CO4	Interpret the concepts of Object-Oriented Programming as used in Python.
BPLCK105C/ BPLCK205C	Basics of Java	CO1	To explain the features and object oriented concepts in JAVA programming
DI LCK203C	1 Togi anning	CO2	To analyse working of bitwise operators in JAVA
		CO3	To develop simple programs based on polymorphism and inheritance
		CO4	To describe the concepts of importing packages and exception handling mechanism
BPLCK105D/ BPLCK205D	Introduction to C++ Programming	CO1	Able to understand and design the solution to a problem using object-oriented programming concepts.
		CO2	Able to reuse the code with extensible Class types, User- defined operators and function Overloading.
		CO3	Achieve code reusability and extensibility by means of Inheritance and Polymorphism
		CO4	Implement the features of C++ including templates,
		CO5	exceptions and file handling for providing programmed solutions to complex problems.
BCEDK203/203	Computer Aided Engineering	CO1	Drawand communicate the objects with definite shape and dimensions
Drawing (Common to All)	Drawing (Common to All)	CO2	Recognize andDraw the shape and size of objects through different views
	CO3	Develop the lateral surfaces of the object	
		CO4	Create a Drawing views using CAD software.

		CO5	Identify the interdisciplinary engineering components or systems through its graphical representation.
BPWSK206-106	Professional Writing Skills in	CO1	To understand and identify the Common Errors in Writing and Speaking.
	English	CO2	To Achieve better Technical writing and Presentation skills.
		CO3	To read Technical proposals properly and make them to Write good technical reports.
		CO4	Acquire Employment and Workplace communication skills.
		CO5	To learn about Techniques of Information Transfer through presentation in different level.
BCS301	Mathematics for Computer Science	CO1	Explain the basic concepts of probability, random variables, probability distribution
		CO2	Apply suitable probability distribution models for the given scenario.
		CO3	Apply the notion of a discrete-time Markov chain and n-step transition probabilities to solve the given problem
		CO4	Use statistical methodology and tools in the engineering problem-solving process.
		CO5	Compute the confidence intervals for the mean of the population.
		CO6	Apply the ANOVA test related to engineering problems.
BCS302	Digital Design and Computer	CO1	Apply the K–Map techniques to simplify various Boolean expressions.
	Organization	CO2	Design different types of combinational and sequential circuits along with Verilog programs.
		CO3	Describe the fundamentals of machine instructions, addressing modes and Processor performance.
		CO4	Explain the approaches involved in achieving communication between processor and I/O devices.
		CO5	Analyze internal Organization of Memory and Impact of cache/Pipelining on Processor Performance
BCS303	OPERATING SYSTEMS	CO1	Explain the structure and functionality of operating system
		CO2	Apply appropriate CPU scheduling algorithms for the given problem.
		CO3	Analyse the various techniques for process synchronization and deadlock handling.
		CO4	Apply the various techniques for memory management
		CO5	Explain file and secondary storage management strategies.
		CO6	Describe the need for information protection mechanisms
BCS304	DATA STRUCTURES AND	CO1	Explain different data structures and their applications.
	APPLICATIONS	CO2	Apply Arrays, Stacks and Queue data structures to solve the given problems.
		CO3	Use the concept of linked list in problem solving.
		CO4	Develop solutions using trees and graphs to model the real- world problem.
		CO5	Explain the advanced Data Structures concepts such as Hashing Techniques and Optimal Binary Search Trees.

BCS306A	Object Oriented Programming with	CO1	Demonstrate proficiency in writing simple programs involving branching and looping structures.
	JAVA	CO2	Design a class involving data members and methods for the given scenario.
		CO3	Apply the concepts of inheritance and interfaces in solving real world problems.
		CO4	Use the concept of packages and exception handling in solving complex problem
		CO5	Apply concepts of multithreading, autoboxing and enumerations in program development
BCS306B	OBJECT ORIENTED PROGRAMMING	CO1	Illustrate the basic concepts of object-oriented programming.
	with C++	CO2	Design appropriate classes for the given real world scenario.
		CO3	Apply the knowledge of compile-time / run-time polymorphism to solve the given problem
		CO4	Use the knowledge of inheritance for developing optimized solutions
		CO5	Apply the concepts of templates and exception handling for the given problem
		CO6	Use the concepts of input output streams for file operations
BSCK307	Social Connect & Responsibility	CO1	Provide a formal platform for students to communicate and connect to the surrounding.
		CO2	create a responsible connection with the society.
		CO3	Understand the community in general in which they work.
		CO4	Identify the needs and problems of the community and involve them in problem –solving.
		CO5	Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems.
		CO6	Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes
BCS358A	Data Analytics with Excel	CO1	To Apply analysis techniques to datasets in Excel • Learn how to use Pivot Tables and Pivot Charts to streamline your workflow in Excel
		CO2	• Understand and Identify the principles of data analysis
		CO3	• Become adept at using Excel functions and techniques for analysis
		CO4	• Build presentation ready dashboards in Excel
BCS358B	R Programming	CO1	Explain the fundamental syntax of R data types, expressions and the usage of the R-Studio IDE
		CO2	Develop a program in R with programming constructs: conditionals, looping and functions.
		CO3	Apply the list and data frame structure of the R programming language. Use visualization packages and file handlers for data analysis
BCS358C	Project	CO1	To familiar with basic command of Git
	Management with Git	CO2	To create and manage branches
		CO3	To understand how to collaborate and work with Remote Repositories

		CO4	To familiar with virion controlling commands
BCS358D	Data Visualization with Python	CO1	Demonstrate the use of IDLE or PyCharm IDE to create Python Applications
		CO2	Use Python programming constructs to develop programs for solving real-world problems
		CO3	Use Matplotlib for drawing different Plots
		CO4	Demonstrate working with Seaborn, Bokeh for visualization.
		CO5	Use Plotly for drawing Time Series and Maps.
BCS401	Analysis & Design of Algorithms	CO1	Apply asymptotic notational method to analyze the performance of the algorithms in terms of time complexity.
		CO2	Demonstrate divide & conquer approaches and decrease & conquer approaches to solve computational problems.
		CO3	Make use of transform & conquer and dynamic programming design approaches to solve the given real world or complex computational problems.
		CO4	Apply greedy and input enhancement methods to solve graph & string based computational problems.
		CO5	Analyse various classes (P,NP and NP Complete) of problems
		CO6	Illustrate backtracking, branch & bound and approximation methods.
BIS402	ADVANCED JAVA	CO1	Apply appropriate collection class/interface to solve the given problem
		CO2	Demonstrate the concepts of String operations in Java
		CO3	Apply the concepts of Swings to build Java applications
		CO4	Develop web based applications using Java servlets and JSP
		CO5	Use JDBC to build database applications
BCS403	DATABASE MANAGEMENT	CO1	Describe the basic elements of a relational database management system
	SYSTEM	CO2	Design entity relationship for the given scenario.
		CO3	Apply various Structured Query Language (SQL) statements for database manipulation.
		CO4	Analyse various normalization forms for the given application.
		CO5	Develop database applications for the given real world problem.
		CO6	Understand the concepts related to NoSQL databases.
BCSL404	Analysis & Design of Algorithms Lab	CO1	Develop programs to solve computational problems using suitable algorithm design strategy.
		CO2	Compare algorithm design strategies by developing equivalent programs and observing running times for analysis (Empirical).
		CO3	Make use of suitable integrated development tools to develop programs
		CO4	Choose appropriate algorithm design techniques to develop solution to the computational and complex problems.
		CO5	Demonstrate and present the development of program, its execution and running time(s) and record the results/inferences.
BCS405A	DISCRETE MATHEMATICA	CO1	Apply concepts of logical reasoning and mathematical proof techniques in proving theorems and statements.
	L STRUCTURES	CO2	Demonstrate the application of discrete structures in different

			fields of computer science.
		CO3	Apply the basic concepts of relations, functions and partially ordered sets for computer representations.
		CO4	Solve problems involving recurrence relations and generating functions.
			Illustrate the fundamental principles of Algebraic structures
		CO5	with the problems related to computer science & engineering.
BCS405B	GRAPH THEORY	CO1	Explain the fundamental concepts of properties and representation of graphs
		CO2	Solve the problems involving characterization and operations on graphs
		CO3	Apply concepts of trees and graph connectivity to solve real world problems
		CO4	Apply the concepts of planar graph and graph representations to solve the given problem.
		CO5	Use the concepts of matching and coloring of graphs to solve the real world problems.
BCS405C	OPTIMIZATION	CO1	Apply the concepts of vector calculus to solve the given
	TECHNIQUE	CO2	Apply the concepts of partial differentiation in machine
		CO3	Analyze the convex optimization algorithms and their importance in computer science & engineering
		CO4	Apply the optimization algorithms to solve the problem.
		CO5	the advanced optimization algorithms for machine learning .
BCS405D	LINEAR ALGEBRA	CO1	Explain the concepts of vector spaces, subspaces, bases, dimension and their properties.
		CO2	Use matrices and linear transformations to solve the given problem.
		CO3	Compute Eigenvalues and Eigenvectors for the linear transformations
		CO4	Determine orthogonality of inner product spaces.
		CO5	Apply the optimization techniques to solve the problems.
BCS456A	Green IT and Sustainability	CO1	Classify the challenges for Green ICT
		CO2	Relate the environmental impact due to emerging technologies.
		CO3	Demonstrate different aspects of ICT metrics.
		CO4	Compare the various parameters related to Sustainable Cloud Computing.
		CO5	Interpret the effects of software design on the sustainability.
BCS456B	CapacityPlanning for IT	CO1	Identify the requirement and measurements for capacity planning by considering the goal, issues, and processes.
		CO2	Explain capacity measurement and monitoring.
		CO3	Make use of measurement data for prediction towards overall planning process.
		CO4	Explain the concepts related to deployment, installation, configuration, and management.
		CO5	how the virtualization and cloud services fit into a capacity plan.
BCS456C	UI/UX	CO1	Explain the user experience design requirements.

		CO2	Relate design thinking concepts and mental models to UX design.
		CO3	Illustrate UX design in line with design goals, metrics and targets.
		CO4	Demonstrate different prototyping in relation with software engineering.
		CO5	5. Explain UX design principles with case examples.
BCSL456D	Technical Writing	CO1	Apply basic LaTeX command to develop simple document
	using LaTeX	CO2	Develop LaTeX script to present the tables and figures in the document
		CO3	Illustrate LaTeX script to present theorems and mathematical equations in the document
		CO4	Develop programs to generate the complete report with citations and a bibliography
		CO5	Illustrate the use of Tikz and algorithm libraries to design gaphics and algorithms in the document
BCS501	Software Engineering &	CO1	Differentiate process models to judge which process model has to be adopted for the given scenarios.
	Project Management	CO2	both functional and nonfunctional requirements from the case study.
		CO3	Analyze the importance of various software testing methods and agile methodology.
		CO4	Illustrate the role of project planning and quality management in software development.
		CO5	Identify appropriate techniques to enhance software quality.
BCS502	COMPUTER	CO1	Explain the fundamentals of computer networks.
	NETWORKS	CO2	Apply the concepts of computer networks to demonstrate the working of various layers and protocols in communication network.
		CO3	Analyze the principles of protocol layering in modern communication systems.
		CO4	Demonstrate various Routing protocols and their services using tools such as Cisco packet tracer.
BC5503	THEORY OF COMPUTATION	CO1	Apply the fundamentals of automata theory to write DFA, NFA, Epsilon-NFA and conversion between them.
003003		CO2	Prove the properties of regular languages using regular expressions.
		CO3	Design context-free grammars (CFGs) and pushdown automata (PDAs) for formal languages.
		CO4	Design Turing machines to solve the computational problems.
		CO5	5. Explain the concepts of decidability and undecidability.
BAIL504	DATA VISUALIZATION	CO1	Design the experiment to create basic charts and graphs using Tableau and Power BI.
	LAB	CO2	Develop the solution for the given real world problem.
		CO3	Analyze the results and produce substantial written documentation.
BAI151A	COMPUTER VISION	CO1	Explain the fundamentals of computer vision and its applications.
		CO2	Apply the image enhancement techniques for smoothing and sharpening of images
		CO3	Compare the different image restoration and segmentation techniques.

		CO4	Demonstrate the smoothing and sharpening techniques for color images.
		CO5	Explain morphological, feature extraction, and pattern classification techniques for object recognition.
BCS515B	ARTIFICIAL INTELLIGENCE	CO1	Explain the architecture and components of intelligent agents, including their interaction with the AI environment.
		CO2	Apply problem-solving agents and various search strategies to solve a given problem.
		CO3	Illustrate logical reasoning and knowledge representation using propositional and first-order logic.
		CO4	Demonstrate proficiency in representing knowledge and solving problems using first-order logic.
		CO5	Describe classical planning in the context of artificial intelligence, including its goals, constraints, and applications in problem-solving.
BCS515C	UNIX SYSTEM PROGRAMMING	CO1	• Demonstrate the basics of Unix concepts and commands.
		CO2	• Demonstrate the UNIX file system.
		CO3	• Apply comands to reflect changes in file system.
		CO4	• Demonstrate IPC and process management.
		CO5	• Develop an application/service over a Unix system.
BCS515D	DISTRIBUTED SYSTEMS	CO1	Identify the goals and challenges of distributed systems
		CO2	Demonstrate the remote invocation techniques for communication
		CO3	Describe the architecture of distributed file systems and name services
		CO4	Apply clock synchronization algorithms to monitor and order the events.
		CO5	Analyze the performance of mutual exclusion, election and consensus algorithms.
		CO6	Illustrate the fundamental concepts and algorithms related to distributed transactions and replication
BCS508	Environmental Studies and E- Waste Management	CO1	Comprehend the principles of ecology and environmental issues pertaining to air, land, and water on a global scale.
		CO2	Acquire observation skills for solving problems related to the environment.
		CO3	Conduct survey to describe the realities of waste management system.